5 research outputs found

    Impairments in ground moving target indicator (GMTI) radar

    Get PDF
    Radars on multiple distributed airborne or ground based moving platforms are of increasing interest, since they can be deployed in close proximity to the event under investigation and thus offer remarkable sensing opportunities. Ground moving target indicator (GMTI) detects and localizes moving targets in the presence of ground clutter and other interference sources. Space-time adaptive processing (STAP) implemented with antenna arrays has been a classical approach to clutter cancellation in airborne radar. One of the challenges with STAP is that the minimum detectable velocity (MDV) of targets is a function of the baseline of the antenna array: the larger the baseline (i.e., the narrower the beam), the lower the MDV. Unfortunately, increasing the baseline of a uniform linear array (ULA) entails a commensurate increase in the number of elements. An alternative approach to increasing the resolution of a radar, is to use a large, but sparse, random array. The proliferation of relatively inexpensive autonomous sensing vehicles, such as unmanned airborne systems, raises the question whether is it possible to carry out GMTI by distributed airborne platforms. A major obstacle to implementing distributed GMTI is the synchronization of autonomous moving sensors. For range processing, GMTI processing relies on synchronized sampling of the signals received at the array, while STAP processing requires time, frequency and phase synchronization for beamforming and interference cancellation. Distributed sensors have independent oscillators, which are naturally not synchronized and are each subject to different stochastic phase drift. Each sensor has its own local oscillator, unlike a traditional array in which all sensors are connected to the same local oscillator. Even when tuned to the same frequency, phase errors between the sensors will develop over time, due to phase instabilities. These phase errors affect a distributed STAP system. In this dissertation, a distributed STAP application in which sensors are moving autonomously is envisioned. The problems of tracking, detection for our proposed architecture are of important. The first part focuses on developing a direct tracking approach to multiple targets by distributed radar sensors. A challenging scenario of a distributed multi-input multi-output (MIMO) radar system (as shown above), in which relatively simple moving sensors send observations to a fusion center where most of the baseband processing is performed, is presented. The sensors are assumed to maintain time synchronization, but are not phase synchronized. The conventional approach to localization by distributed sensors is to estimate intermediate parameters from the received signals, for example time delay or the angle of arrival. Subsequently, these parameters are used to deduce the location and velocity of the target(s). These classical localization techniques are referred to as indirect localization. Recently, new techniques have been developed capable of estimating target location directly from signal measurements, without an intermediate estimation step. The objective is to develop a direct tracking algorithm for multiple moving targets. It is aimed to develop a direct tracking algorithm of targets state parameters using widely distributed moving sensors for multiple moving targets. Potential candidate for the tracker include Extended Kalman Filter. In the second part of the dissertation,the effect of phase noise on space-time adaptive processing in general, and spatial processing in particular is studied. A power law model is assumed for the phase noise. It is shown that a composite model with several terms is required to properly model the phase noise. It is further shown that the phase noise has almost linear trajectories. The effect of phase noise on spatial processing is analyzed. Simulation results illustrate the effect of phase noise on degrading the performance in terms of beam pattern and receiver operating characteristics. A STAP application, in which spatial processing is performed (together with Doppler processing) over a coherent processing interval, is envisioned

    Graphical Models in Characterizing the Dependency Relationship in Wireless Networks and Social Networks

    Get PDF
    Semi-Markov processes have become increasingly important in probability and statistical modeling, which have found applications in traffic analysis, reliability and maintenance, survival analysis, performance evaluation, biology, DNA analysis, risk processes, insurance and finance, earthquake modeling, etc. In the first part of this thesis, our focus is on applying semi-Markov processes to modeling the on-off duty cycles of different nodes in wireless networks. More specifically, we are interested in restoration of statistics of individual occupancy patterns of specific users based on wireless RF observation traces. In particular, we present a novel approach to finding the statistics of several operations, namely down-sampling, superposition and mislabelling, of a discrete time semi-Markov process in terms of the sojourn time distributions and states transition matrix of the resulting process. The resulting process, after those operations, is also a semi-Markov processes or a Markov renewal process. We show that the statistics of the original sequence before the superposition operation of two semi Markov processes can be generally recovered. However the statistics of the original sequence cannot be recovered under the down-sampling operation, namely the probability transition matrix and the sojourn time distribution properties are distorted after the down-sampling. Simulation and numerical results further demonstrate the validity of our theoretical findings. Our results thus provide a more profound understanding on the limitation of applying semi-Markov models in characterizing and learning the dynamics of nodes\u27 activities in wireless networks. In the second portion of the thesis a review is provided about several graphical models that have been widely used in literature recently to characterize the relationships between different users in social networks, the influence of the neighboring nodes in the networks or the semantic similarity in different contexts

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit

    No full text

    Twelve-Month Outcomes of the AFFINITY Trial of Fluoxetine for Functional Recovery After Acute Stroke: AFFINITY Trial Steering Committee on Behalf of the AFFINITY Trial Collaboration

    Get PDF
    Background and Purpose: The AFFINITY trial (Assessment of Fluoxetine in Stroke Recovery) reported that oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and seizures. After trial medication was ceased at 6 months, survivors were followed to 12 months post-randomization. This preplanned secondary analysis aimed to determine any sustained or delayed effects of fluoxetine at 12 months post-randomization. Methods: AFFINITY was a randomized, parallel-group, double-blind, placebo-controlled trial in adults (n=1280) with a clinical diagnosis of stroke in the previous 2 to 15 days and persisting neurological deficit who were recruited at 43 hospital stroke units in Australia (n=29), New Zealand (4), and Vietnam (10) between 2013 and 2019. Participants were randomized to oral fluoxetine 20 mg once daily (n=642) or matching placebo (n=638) for 6 months and followed until 12 months after randomization. The primary outcome was function, measured by the modified Rankin Scale, at 6 months. Secondary outcomes for these analyses included measures of the modified Rankin Scale, mood, cognition, overall health status, fatigue, health-related quality of life, and safety at 12 months. Results: Adherence to trial medication was for a mean 167 (SD 48) days and similar between randomized groups. At 12 months, the distribution of modified Rankin Scale categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio, 0.93 [95% CI, 0.76–1.14]; P =0.46). Compared with placebo, patients allocated fluoxetine had fewer recurrent ischemic strokes (14 [2.18%] versus 29 [4.55%]; P =0.02), and no longer had significantly more falls (27 [4.21%] versus 15 [2.35%]; P =0.08), bone fractures (23 [3.58%] versus 11 [1.72%]; P =0.05), or seizures (11 [1.71%] versus 8 [1.25%]; P =0.64) at 12 months. Conclusions: Fluoxetine 20 mg daily for 6 months after acute stroke had no delayed or sustained effect on functional outcome, falls, bone fractures, or seizures at 12 months poststroke. The lower rate of recurrent ischemic stroke in the fluoxetine group is most likely a chance finding. REGISTRATION: URL: http://www.anzctr.org.au/ ; Unique identifier: ACTRN12611000774921
    corecore